Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 24;240(2-3):185-93.
doi: 10.1016/0014-2999(93)90897-q.

L-deprenyl confers specific protection against MPTP-induced Parkinson's disease-like movement disorder in the goldfish

Affiliations

L-deprenyl confers specific protection against MPTP-induced Parkinson's disease-like movement disorder in the goldfish

O M Adeyemo et al. Eur J Pharmacol. .

Abstract

Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the goldfish causes a reversible, Parkinson's disease-like syndrome which includes loss of noradrenaline and dopamine from the brain, accumulation of the toxic metabolite 1-methyl-4-phenylpyridinium species (MPP+), and substantial reduction in movement. L-Deprenyl, a selective monoamine oxidase-B inhibitor, protects the goldfish from loss of movement, but clorgyline, a selective monoamine oxidase-A inhibitor, has no such protective action. L-Deprenyl and clorgyline primarily inhibit goldfish brain monoamine oxidase-B and monoamine oxidase-A, respectively. The mechanism by which MPTP causes reduced movement in goldfish is to cause an increase in resting time. Otherwise normal average velocity occurred during periods of movement. L-Deprenyl protection results in entirely 'normal' levels of resting time and average velocity during times of movement. Equivalent observations regarding l-deprenyl and clorgyline have been made in primate models of MPTP toxicity, and l-deprenyl is used for treatment of Parkinson's disease in humans. Therefore it is suggested that the evolutionarily equivalent subcortical circuitry and neural density of the goldfish brain may provide a useful model upon which to search for drugs relevant to human Parkinson's disease.

PubMed Disclaimer

MeSH terms

LinkOut - more resources