Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Apr:463:501-21.
doi: 10.1113/jphysiol.1993.sp019608.

Retinal origins of the temperature effect on absolute visual sensitivity in frogs

Affiliations
Comparative Study

Retinal origins of the temperature effect on absolute visual sensitivity in frogs

A C Aho et al. J Physiol. 1993 Apr.

Abstract

1. The absolute sensitivity of vision was studied as a function of temperature in two species of frog (Rana temporaria, 9-21 degrees C, and Rana pipiens, 13-28 degrees C). 2. Log behavioural threshold (measured as the lowest light intensity by which frogs trying to escape from a dark box were able to direct their jumping) rose near-linearly with warming with a regression coefficient of 1.26 +/- 0.03 log units per 10 degrees C (Q10 = 18). Threshold retinal illumination corresponded to 0.011 photoisomerizations per rod per second (Rh* s-1) at 16.5 degrees C. 3. The effect of dim backgrounds on jumping thresholds suggested 'dark lights' of 0.011 Rh* s-1 at 16.5 degrees C and 0.080 Rh* s-1 at 23.5 degrees C, corresponding to Q10 = 17. 4. Response thresholds of retinal ganglion cells were extracellularly recorded in the isolated eyecup of R. temporaria. The thresholds of the most sensitive cells when stimulated with large-field steps of light were similar to the behavioural threshold and changed with temperature in a similar manner. 5. The decrease in ganglion cell 'step' sensitivity with warming consisted of a decrease in summation time (by a factor of 2-3 between 10 and 20 degrees C) and an increase in the threshold number of photoisomerizations (a decrease in 'flash' sensitivity, by a factor of 2-5 over the same interval). No effect of temperature changes on spatial summation was found. 6. Frequency-of-response functions of ganglion cells indicated an 11-fold increase in noise-equivalent dark light between 10 and 20 degrees C (mean values in four cells 0.009 vs. 0.10 Rh* s-1). 7. The temperature dependence of ganglion cell flash sensitivity could be strongly decreased with dim background illumination. 8. It is concluded that the desensitization of dark-adapted vision with rising temperature is a retinal effect composed of shortened summation time and lowered flash sensitivity (increased numbers of photons required for a threshold response) in ganglion cells. The desensitization bears no simple relation to the apparent retinal noise increase.

PubMed Disclaimer

References

    1. Vision Res. 1989;29(1):1-18 - PubMed
    1. Acta Physiol Scand. 1988 Dec;134(4):535-41 - PubMed
    1. J Physiol. 1990 Sep;428:673-92 - PubMed
    1. Vision Res. 1992 May;32(5):853-66 - PubMed
    1. J Opt Soc Am. 1956 Aug;46(8):634-9 - PubMed

Publication types

LinkOut - more resources