Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec;8(12):3307-12.

Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells

Affiliations
  • PMID: 8247533

Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells

K K Khanna et al. Oncogene. 1993 Dec.

Abstract

Cell cycle anomalies have been described in ataxia-telangiectasia cells after exposure to ionizing radiation. A recent report demonstrates that cells from these patients lack the ionizing radiation-induced increase in p53 protein seen in controls. We report here that an ionizing radiation-induced p53 response is reduced and/or delayed in cells from four ataxia-telangiectasia complementation groups. On the other hand, p53 induction is normal in all A-T complementation groups after exposure to UV-B light, an agent to which these cells are not hypersensitive. Specific inhibitors of protein kinase C and serine/threonine phosphatases prevented the radiation induction of p53 protein. Agents that produced double-strand breaks in DNA and/or inhibition of transcription caused an induction of p53 in the absence of radiation in control cells but not in ataxia-telangiectasia, but inhibitors of cell cycle progression such as mimosine and aphidicolin led to an increase in p53 in both cell types in the absence of radiation. These results suggest that there is more than one signal transduction pathway responsible for activation of p53, one of which is less efficient in ataxia-telangiectasia cells.

PubMed Disclaimer

Publication types

MeSH terms