Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Oct;37(7):633-42.
doi: 10.1111/j.1399-6576.1993.tb03780.x.

Pharmacokinetics and related pharmacodynamics of anticholinergic drugs

Affiliations
Review

Pharmacokinetics and related pharmacodynamics of anticholinergic drugs

T Ali-Melkkilä et al. Acta Anaesthesiol Scand. 1993 Oct.

Abstract

The pharmacokinetics and some pharmacodynamic properties of atropine, glycopyrrolate and scopolamine are reviewed. With the development of new analytical methods for drug determination, it is now possible to measure relatively low concentrations of these drugs in biological fluids and, consequently, some new kinetic data have been collected. Following intravenous administration, a fast disappearance from the circulation is observed and due to a high total clearance value their elimination phase half-lives vary from 1 to 4 h. All these agents are nonselective muscarinic receptor antagonists, but their actions on various organ systems with cholinergic innervation show considerable diversity. The cardiovascular effects are of short duration; other peripheral muscarinic effects and CNS effects can last up to 8 h or even longer. Differing from atropine and scopolamine, glycopyrrolate as a quaternary amine penetrates the biological membranes (blood-CNS, placental barriers) slowly and incompletely, making it the drug of choice for elderly patients with coexisting diseases and for obstetric use. Similarly, its oral absorption is slow and erratic, and hence it cannot be used as an oral premedicant. Atropine, scopolamine and glycopyrrolate have a definitely faster absorption rate, when injected into the deltoid muscle compared with administration into the gluteal or vastus lateralis muscles. There appear to be significant differences in the metabolism and renal excretion of these agents. Scopolamine is apparently excreted into the urine mainly as inactive metabolites, nearly half of the atropine dose administered is recovered in the urine as the parent drug or as active metabolites and about 80% of glycopyrrolate is excreted as unchanged drug or active metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources