Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 15;268(35):26302-9.

Synthesis and characterization of kaliotoxin. Is the 26-32 sequence essential for potassium channel recognition?

Affiliations
  • PMID: 8253752
Free article

Synthesis and characterization of kaliotoxin. Is the 26-32 sequence essential for potassium channel recognition?

R Romi et al. J Biol Chem. .
Free article

Abstract

Kaliotoxin (KTX), a scorpion toxin characterized as a 37-residue inhibitor of the neuronal high conductance Ca(2+)-activated K+ channels (KCa channels), has been chemically synthetized. Differences were observed between natural toxin and the two peptides, KTX(1-37) and KTX(1-37)-amide. Re-examination of the KTX sequence showed that an extra lysine residue was present at the C-terminal end. The 38-residue synthetic peptide was found identical with natural toxin. All three peptides had comparable activities, with LD50 values of 6-9 pmol/mouse after intracerebroventricular injection, and Kd = 2-8 nM for blockage of the whole cell and unitary molluscan KCa currents. Pairing of the disulfide bonds in synthetic KTX corresponded to that in charybdotoxin and iberiotoxin. A competition assay between 125I-KTX(1-37) and different toxins (KTX, dendrotoxin, charybdotoxin, MCD peptide, and iberiotoxin) for binding to rat brain synaptosomal membranes suggested that KTX interacts also with voltage-gated K+ channels. Shorter peptides, KTX(25-35)-amide and KTX(26-32)-amide, expressed no KTX activity, but were able to compete in binding. They were further shown to antagonize KTX in both its toxicity and blocking activity. The (26-32) sequence of KTX, which is a highly conserved region, may contain a low affinity binding subsite essential for potassium channel recognition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources