Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;56(3):759-69.
doi: 10.1016/0306-4522(93)90372-m.

Characterization of potassium currents in adult rat sensory neurons and modulation by opioids and cyclic AMP

Affiliations

Characterization of potassium currents in adult rat sensory neurons and modulation by opioids and cyclic AMP

P T Akins et al. Neuroscience. 1993 Oct.

Abstract

Using the whole-cell patch-clamp technique on acutely dissociated and cultured adult rat sensory neurons, we characterized the K+ currents by voltage dependence, kinetics, calcium dependence, and pharmacology. In the presence of Ca channel blockers, the cells heterogeneously expressed transient and sustained outward K+ currents. The transient current was a high-threshold A-current which activated at potentials greater than -30 mV and was blocked by 4-aminopyridine. Some of the sustained current was classified as a delayed rectifier. It demonstrated shallow voltage-dependent inactivation and was blocked by tetraethylammonium. Capsaicin produced large reductions in both transient and sustained currents with an EC50 of 8 microM. Likewise, dendrotoxin partially blocked both currents but with an EC50 of 21 nM. In the absence of Ca channel blockers, a prominent Ca-dependent K+ current was observed. The kinetics of whole-cell potassium currents varied widely among cells, perhaps reflecting the different functional properties of sensory neurons. We also investigated the effects of elevating intracellular cyclic AMP and applying opioids on K+ currents. Membrane-permanent analogs of cyclic AMP and phosphodiesterase inhibitors caused small reductions in voltage-dependent outward current. In contrast, forskolin produced a large reduction in outward current. This response was not solely mediated by cyclic AMP, since large responses were elicited with an inactive congener, 1,9-dideoxyforskolin, but not with the active, water-soluble congener, 7-deacetyl-6-[N-acetylglycyl]-forskolin. Surprisingly, opioids had no effect on resting or voltage-dependent K+ conductances. However, opioid inhibition of Ca2+ currents and Ca-dependent K+ currents was observed. The failure to demonstrate opioid modulation of resting or voltage dependent K+ currents suggests that modulation of Ca2+ currents is the principal mechanism for the inhibitory effect of opioids on sensory neurons.

PubMed Disclaimer

Publication types

LinkOut - more resources