Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec;100(12):1828-34.
doi: 10.1016/s0161-6420(93)31390-4.

Ultraviolet solid-state laser (213-nm) photorefractive keratectomy. In vitro study

Affiliations
Free article

Ultraviolet solid-state laser (213-nm) photorefractive keratectomy. In vitro study

Q Ren et al. Ophthalmology. 1993 Dec.
Free article

Abstract

Background: Replacing the gas argon fluoride (193 nm) excimer laser with a solid-state laser source in the far-ultraviolet spectrum region would eliminate the hazards of a gas laser and would reduce its size, which is desirable for photorefractive keratectomy. The authors investigated corneal reshaping using a frequency-quintupled (213 nm) pulsed (10 ns) neodymium:YAG laser coupled to a computer-controlled optical scanning delivery system.

Methods: A 250 +/- 15-mJ/cm2 radiant exposure was used to ablate a 5-mm optical zone in human cadaver eyes and rabbit eyes. The 213-nm laser pulses were delivered through and shaped by a computer-controlled optical scanning delivery system, producing a 0.5-mm spot with a quasi-Guassian energy distribution on the cornea. Corneal surface changes were documented by computer-assisted corneal topography. Light microscopy, scanning electron microscopy, and transmission electron microscopy were performed to examine the effects on corneal surface quality and cellular components.

Results: Corneal topographic measurements showed myopic corrections ranging from 2.3 to 6.1 diopters. Results of postoperative examination with the slit lamp and operating microscope demonstrated a smoothly ablated surface without corneal haze. Histologic results showed a smoothly sloping surface without recognizable steps. The surface quality and cellular effects were similar to that of previously described excimer photorefractive keratectomy.

Conclusion: The authors demonstrated that an ultraviolet (213-nm) solid-state laser coupled to an optical scanning delivery system is capable of reshaping the corneal surface with smooth transition. The scanning beam delivery system may offer the advantage of producing spatially resolved, customized, aspheric corrections to optimize the quality of vision after photorefractive keratectomy.

PubMed Disclaimer

Publication types

LinkOut - more resources