Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;10(5):321-30.
doi: 10.3109/07420529309064486.

The effects of lithium on a neuronal in vitro circadian pacemaker

Affiliations

The effects of lithium on a neuronal in vitro circadian pacemaker

S B Khalsa et al. Chronobiol Int. 1993 Oct.

Abstract

Previous studies have suggested a causal connection between abnormalities of the circadian system and affective disorders. The effectiveness of lithium or rubidium as a treatment for affective disorders and the ability of lithium or rubidium to influence circadian pacemakers has stimulated research into the mechanism of lithium's action on circadian systems. In this study we used a neuronal in vitro circadian pacemaker preparation, the eye of the mollusc Bulla, to examine the cellular effects of lithium and rubidium. Continuous extracellular LiCl application lengthens the period of the circadian rhythm of the Bulla pacemaker in a concentration-dependent manner. Rubidium was found to be more effective than lithium in period lengthening. Stable phase delays were generated by 2-h pulses of 395 mM LiCl applied extracellularly from zeitgeber time (ZT) 5-7 (mid subjective day). Concomitant continuous application of 16 mM LiCl and light (a depolarizing agent) generated period lengthening substantially greater than the arithmetic sum of the modest period lengthening of each treatment alone. Furthermore, LiCl pulses, applied together with depolarizing extracellular KCl concentrations, yielded an increasing magnitude of phase delays with increasing KCl concentration. These data suggest that LiCl acts intracellularly on the circadian pacemaker cells by entering through a voltage-dependent channel, most likely a sodium channel.

PubMed Disclaimer

Publication types

LinkOut - more resources