Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec 25;268(36):27291-8.

The human active breakpoint cluster region-related gene encodes a brain protein with homology to guanine nucleotide exchange proteins and GTPase-activating proteins

Affiliations
  • PMID: 8262969
Free article

The human active breakpoint cluster region-related gene encodes a brain protein with homology to guanine nucleotide exchange proteins and GTPase-activating proteins

E C Tan et al. J Biol Chem. .
Free article

Abstract

GTPase-activating proteins (GAPs) modulate the activity of the ras superfamily of proteins by converting active GTP-bound to inactive GDP-bound p21s. Employing a novel GAP overlay assay (Manser, E., Leung, T., Monfries, C., Teo, M., Hall, C., and Lim, L. (1992) J. Biol. Chem. 267, 16025-16028), we demonstrated a diversity of proteins with GAP activities in different tissues. Using a polymerase chain reaction strategy exploiting conserved residues in the GAP domains of n-chimaerin and the product of the breakpoint cluster region gene (BCR), we isolated a human brain 5.3-kilobase cDNA containing a 486-base pair region with complete identity to a previously reported active BCR-related (ABR) gene sequence on human chromosome 17. The brain cDNA encoded a 98-kDa protein (ABR) resembling BCR (68% identity), containing both the oncogene dbl-related domain at the N terminus and the GAP domain at the C terminus; however, it lacks the N-terminal BCR protein kinase domain. The ABR GAP domain expressed as an Escherichia coli fusion protein was active against Rac1 and Cdc42 of the rho subfamily. The ABR mRNA is highly enriched in the brain. ABR probably corresponds to the brain-enriched 100-kDa GAP for Rac and Cdc42Hs previously detected. The relationship of ABR to Miller-Dieker syndrome, a neurological disorder co-mapping to 17p13.3, is discussed.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources