Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1994 Jan;12(1):194-205.
doi: 10.1200/JCO.1994.12.1.194.

Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione

Affiliations
Clinical Trial

Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione

H H Bailey et al. J Clin Oncol. 1994 Jan.

Abstract

Purpose: A phase I dose-escalation trial of intravenous (IV) L-buthionine-SR-sulfoximine (BSO) with melphalan (L-PAM) was performed to determine the toxicity and biologic activity of BSO, administered as a short infusion every 12 hours, and the combination of BSO plus L-PAM.

Patients and methods: Twenty-eight patients with refractory malignancies received 30-minute infusions of BSO every 12 hours for 6 to 10 doses in week 1 followed in week 2 by either IV L-PAM (15 mg/m2) alone or BSO as in week 1 with L-PAM. Patients received the combination in week 5 (course no. 2) if they received L-PAM alone during week 2 and vice versa. BSO doses ranged from 1.5 g/m2 to 13.104 g/m2.

Results: The only toxicity observed with BSO infusions was occasional nausea/vomiting. Evaluation of 23 paired courses (L-PAM plus BSO v L-PAM) showed significantly (P < .001) greater leukopenia and thrombocytopenia with L-PAM plus BSO. No other significant toxicity was noted. Measurement of intracellular glutathione (GSH) levels in peripheral mononuclear cells (PBLs) of all patients receiving BSO showed a consistent, non-dose-dependent, linear decrease in GSH with repeated BSO doses. Maximal GSH depletion (40% of baseline values, absolute values 200 to 250 ng/10(6) PBLs) was noted after the sixth BSO dose; extended BSO dosing schedules beyond six total BSO doses did not further deplete GSH. Evaluation of gamma-glutamylcysteine synthetase (GCS) activity showed marked inhibition near the end of each infusion with near complete recovery of GCS activity before the next BSO dose. The pattern of GCS inhibition mirrored the plasma BSO concentrations with peak values (level 6, 4 to 8 mmol/L L,R+L,S BSO) observed at the end of the infusion with a rapid decrease in plasma concentrations with an estimated half-life (t1/2) of less than 2 hours. Differential elimination of the R+S stereoisomers was observed. Analysis of L-PAM pharmacokinetics showed marked interpatient variability and a significant decrease in total-body clearance (P = .01) and volume of distribution (P = .03) in courses with L-PAM plus BSO as compared with L-PAM alone.

Conclusion: This study shows that BSO alone and in combination with L-PAM can be safely given to patients, but that a schedule of short infusions every 12 hours does not result in GSH depletion less than 30% of baseline values.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources