Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;10(10):1411-9.
doi: 10.1023/a:1018906821725.

Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus

Affiliations

Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus

Y Wang et al. Pharm Res. 1993 Oct.

Abstract

A retrodialysis (RD) method for the real-time calibration of on-line microdialysis (MD) procedures was investigated in vitro and in vivo. Calibration by retrodialysis was simultaneously validated through the use of a zero-net flux (ZNF) method, which assumes directional independence of diffusion of the solute. In RD, a calibrator with dialysance (PeA; effective permeability-surface area product) similar to that of the compound of interest is introduced into the perfusate. If the calibrator is suitable, its loss from the perfusate during RD is identical to the recovery of the solute of interest determined simultaneously by normal MD. Two antiviral nucleosides (AZT and AZdU) which differ structurally by only a methylene group were utilized as solute and calibrator, respectively. Both nucleosides exhibited similar recovery and loss at flow rates of 0.5 to 5 microL/min in vitro, indicating a similar PeA product in this flow domain. Furthermore, both compounds showed similar loss into the lateral ventricle or thalamus of rabbits (n = 4) during RD at a flow rate of 1 microL/min for 6 hr. The relative loss decreased rapidly within the first hour, reaching a relatively stable value after 2 hr. The significant reduction in the loss of AZdU and AZT in vivo compared with that in vitro likely results from a lower diffusion coefficient in tissue. The distribution of AZT between plasma and cerebrospinal fluid (CSF) in the ventricle and extracellular fluid (ECF) in thalamus was determined at steady state using calibration by RD and ZNF simultaneously.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Eur J Pharmacol. 1990 Aug 28;185(2-3):187-93 - PubMed
    1. J Neurosci Methods. 1985 Nov-Dec;15(3):263-8 - PubMed
    1. Pharm Res. 1991 Mar;8(3):389-92 - PubMed
    1. Bull Schweiz Akad Med Wiss. 1974 Jul;30(1-3):44-55 - PubMed
    1. Pharm Res. 1992 Mar;9(3):332-8 - PubMed

Publication types

LinkOut - more resources