Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Aug;102(4):1129-37.
doi: 10.1104/pp.102.4.1129.

Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions

Affiliations
Comparative Study

Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions

K Paul et al. Plant Physiol. 1993 Aug.

Abstract

The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme.

PubMed Disclaimer

Similar articles

References

    1. Biochemistry. 1991 Oct 15;30(41):10019-26 - PubMed
    1. J Biol Chem. 1991 Apr 25;266(12):7359-62 - PubMed
    1. J Mol Biol. 1969 May 14;41(3):459-72 - PubMed
    1. Anal Biochem. 1985 Oct;150(1):76-85 - PubMed
    1. Eur J Biochem. 1987 Mar 16;163(3):591-8 - PubMed

Publication types

MeSH terms

LinkOut - more resources