Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 5;1199(1):81-6.
doi: 10.1016/0304-4165(94)90100-7.

Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal

Affiliations

Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal

T Higuchi et al. Biochim Biophys Acta. .

Abstract

Carbonyl reductase from rabbit kidney was inactivated by phenylglyoxal (PGO) and 2,4,6-trinitrobenzenesulfonate sodium (TNBS). NADP+ protected the enzyme from the inactivations by PGO and TNBS, suggesting that essential arginine and lysine residues are located in coenzyme-binding domain of the enzyme. Judging from the effects of PGO-treated enzymes in the presence and in the absence of NADP+ on the fluorescence intensity of NADPH, one essential arginine residue in coenzyme-binding domain was found to have a role in the binding of NADPH to the enzyme. Indomethacin afforded a significant protection against inactivation of the enzyme by PGO, whereas it could not protect the enzyme from the inactivation by TNBS. It is reasonable to postulate that indomethacin interacts at least in part with or near one essential arginine residue in coenzyme-binding domain of carbonyl reductase from rabbit kidney.

PubMed Disclaimer

LinkOut - more resources