Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Oct;56(4):887-904.
doi: 10.1016/0306-4522(93)90135-3.

Persistent muscarinic excitation in guinea-pig olfactory cortex neurons: involvement of a slow post-stimulus afterdepolarizing current

Affiliations

Persistent muscarinic excitation in guinea-pig olfactory cortex neurons: involvement of a slow post-stimulus afterdepolarizing current

A Constanti et al. Neuroscience. 1993 Oct.

Abstract

The persistent excitatory effects of the muscarinic agonist oxotremorine-M were investigated in guinea-pig olfactory cortex neurons in vitro (28-30 degrees C) using a single-microelectrode current-clamp/voltage-clamp technique. In 40% of recorded cells (type 1), bath-application of oxotremorine-M (2-10 microM; 1-2 min) induced a strong membrane depolarization, an increase in input resistance and a sustained neuronal discharge lasting over 30 min following agonist washout. A large depolarizing stimulus applied during the action of oxotremorine-M, evoked a slow post-stimulus afterdepolarization (approximately 10-15 mV) lasting approximately 30 s. Injection of steady negative current at the peak of this response produced a slow repolarization of the membrane potential (half-time approximately 0.6 min) towards a plateau level ("hyperpolarization recovery"); these effects of oxotremorine-M were slowly reversed on washout or by application of atropine (1 microM). In a second population of neurons (type 2; 39% of total), oxotremorine-M produced a large depolarization, a resistance increase and repetitive firing that did not persist after agonist washout; these neurons failed to generate a prominent slow afterdepolarization on stimulation, and showed no hyperpolarization recovery effect. Their resting membrane properties were not significantly different from those of type 1 cells. The remaining proportion of cells (type 3) elicited little or no muscarinic response to oxotremorine-M and no slow afterdepolarization; these cells showed characteristics spike fractionation (pre-potentials) during an evoked train of action potentials.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources