Glutathione-dependent bioactivation of xenobiotics
- PMID: 8284943
- DOI: 10.3109/00498259309059415
Glutathione-dependent bioactivation of xenobiotics
Abstract
Glutathione conjugation has been identified as an important detoxication reaction. However, in recent years several glutathione-dependent bioactivation reactions have been identified. Current knowledge on the mechanisms and the possible biological importance of these reactions are discussed. 1. Dichloromethane is metabolized by glutathione conjugation to formaldehyde via S-(chloromethyl)glutathione. Both compounds are reactive intermediates and may be responsible for the dichloromethane-induced tumorigenesis in sensitive species. 2. Vicinal dihaloalkanes are transformed by glutathione S-transferase-catalyzed reactions to mutagenic and nephrotoxic S-(2-haloethyl)glutathione S-conjugates. Electrophilic episulphonium ions are the ultimate reactive intermediates formed. 3. Several polychlorinated alkenes are bioactivated in a complex, glutathione-dependent pathway. The first step is hepatic glutathione S-conjugate formation followed by cleavage to the corresponding cysteine S-conjugates, and, after translocation to the kidney, metabolism by renal cysteine conjugate beta-lyase. Beta-Lyase-dependent metabolism of halovinyl cysteine S-conjugates yields electrophilic thioketenes, whose covalent binding to cellular macromolecules is responsible for the observed toxicity of the parent compounds. 4. Finally, hepatic glutathione conjugate formation with hydroquinones and aminophenols yields conjugates that are directed to gamma-glutamyltransferase-rich tissues, such as the kidney, where they undergo alkylation or redox cycling reactions, or both, that cause organ-selective damage.
Similar articles
-
Chemical-induced nephrotoxicity mediated by glutathione S-conjugate formation.Toxicol Lett. 2001 Oct 15;124(1-3):21-36. doi: 10.1016/s0378-4274(00)00285-x. Toxicol Lett. 2001. PMID: 11684355 Review.
-
Glutathione-dependent toxicity.Xenobiotica. 1992 Sep-Oct;22(9-10):1135-45. doi: 10.3109/00498259209051867. Xenobiotica. 1992. PMID: 1441604 Review.
-
Biosynthesis of toxic glutathione conjugates from halogenated alkenes.Toxicol Lett. 2003 Sep 15;144(1):49-54. doi: 10.1016/s0378-4274(02)00338-7. Toxicol Lett. 2003. PMID: 12919723 Review.
-
Glutathione-dependent bioactivation of haloalkenes.Annu Rev Pharmacol Toxicol. 1998;38:501-37. doi: 10.1146/annurev.pharmtox.38.1.501. Annu Rev Pharmacol Toxicol. 1998. PMID: 9597164 Review.
-
Glutathione conjugate mediated toxicities.Toxicol Appl Pharmacol. 1990 Oct;106(1):1-19. doi: 10.1016/0041-008x(90)90100-9. Toxicol Appl Pharmacol. 1990. PMID: 2251674 Review.
Cited by
-
CYP1A2*1F and GSTM1 alleles are associated with susceptibility to porphyria cutanea tarda.Mol Med. 2011 Mar-Apr;17(3-4):241-7. doi: 10.2119/molmed.2010.00130. Epub 2010 Oct 15. Mol Med. 2011. PMID: 20957336 Free PMC article.
-
In Vivo Rate of Formaldehyde Condensation with Tetrahydrofolate.Metabolites. 2020 Feb 12;10(2):65. doi: 10.3390/metabo10020065. Metabolites. 2020. PMID: 32059429 Free PMC article.
-
The Generation of ROS by Exposure to Trihalomethanes Promotes the IκBα/NF-κB/p65 Complex Dissociation in Human Lung Fibroblast.Biomedicines. 2024 Oct 20;12(10):2399. doi: 10.3390/biomedicines12102399. Biomedicines. 2024. PMID: 39457711 Free PMC article.
-
Glutathione S-Transferases in Cancer.Antioxidants (Basel). 2021 Apr 29;10(5):701. doi: 10.3390/antiox10050701. Antioxidants (Basel). 2021. PMID: 33946704 Free PMC article. Review.
-
Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition.Antioxid Redox Signal. 2015 Jun 1;22(16):1382-424. doi: 10.1089/ars.2014.6097. Epub 2014 Dec 19. Antioxid Redox Signal. 2015. PMID: 25364882 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources