Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Nov;37(11):2385-90.
doi: 10.1128/AAC.37.11.2385.

Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa

Affiliations

Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa

H Yoneyama et al. Antimicrob Agents Chemother. 1993 Nov.

Abstract

Most imipenem-resistant Pseudomonas aeruginosa isolates produce an immunologically undetectable level of protein D2 (OprD2). To study the efficient elimination of the protein, we selected 23 independent imipenem-resistant mutants from a strain harboring the plasmid carrying cloned oprD and having a mutation in chromosomal oprD. All these oprD/oprD (plasmid/chromosomal) mutants expressed undetectable levels of OprD2, as shown from an assay by the immunoblotting method. Restriction maps of the DNAs from all 23 mutant plasmids could be divided into two groups. Restriction mapping and sequencing analysis of DNA from one representative plasmid from each group showed that both mutant oprD genes had a deletion. One had an 11-bp deletion in the coding region generating a frameshift mutation and a premature termination codon. Another had a large deletion encompassing the upstream site of its putative promoter region through the coding region. Northern blotting analysis showed that the gene with the 11-bp deletion was transcribed to about 1.5 kb of mRNA, but the gene with the large deletion produced undetectable RNA complementary to the oprD DNA probe. Since we analyzed only plasmid-borne oprD, we cannot exclude the possibility that the imipenem resistance caused by the chromosomal mutation is by a different mechanism(s). It is suggested, yet, that clear elimination of OprD2 from most imipenem-resistant P. aeruginosa isolates is due to efficient selection of the oprD deletion mutants.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Infect Dis. 1986 Aug;154(2):289-94 - PubMed
    1. Crit Rev Microbiol. 1986;13(1):1-62 - PubMed
    1. J Biol Chem. 1989 Apr 15;264(11):6297-301 - PubMed
    1. Antimicrob Agents Chemother. 1989 Aug;33(8):1202-6 - PubMed
    1. Antimicrob Agents Chemother. 1990 Jan;34(1):52-7 - PubMed

Publication types

LinkOut - more resources