Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 1994 Jan;64(1):36-52.
doi: 10.1006/enrs.1994.1005.

Air pollution and daily mortality: a review and meta analysis

Affiliations
Meta-Analysis

Air pollution and daily mortality: a review and meta analysis

J Schwartz. Environ Res. 1994 Jan.

Abstract

The air pollution disaster in London in 1952 established that very high levels of particulate-based smog can cause dramatic increases in daily mortality. Recently, more than a dozen studies at much lower particle concentrations have reported evidence that exposure to lower levels of airborne particles results in smaller, but nonzero increases in daily mortality. These studies were examined in a meta-analysis. A primary focus of the meta-analysis was to examine effect size estimates across large differences in both the levels of potential confounding factors and in their correlation with airborne particle concentration. In the primary meta-analysis, airborne particle concentration was a significant risk factor for elevated mortality (RR = 1.06, 95% CI = 1.05-1.07). The relative risk is for a 100 micrograms/m3 increase in TSP concentration. While mortality peaked in the cold months in all locations, in the majority of the studies airborne particle concentrations were highest in the warm months, indicating that seasonal patterns were not responsible for the observed associations. The relative risk was 1.06 (95% CI = 1.05-1.07) when the analysis was restricted to cities with summer peaking pollution. The relative risk was identical in cities with above average annual temperatures and cities with colder climates. It was also identical in drier and more humid climates, and similar across a wide range of correlations between temperature and airborne particle concentrations. These results suggest that inadequate weather control was not responsible for the association. A detailed examination of data from Philadelphia showed that control for season and weather was adequate for removing all long-term seasonal and subseasonal patterns from the mortality data, and that using a very flexible nonlinear fit to the weather factors did not disturb the association with TSP. The most reasonable interpretation of this pattern of results is that the association is causal. This is supported by other studies which have reported that particulate air pollution was associated with lung function deficits, increased symptoms, and increased hospitalization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources