Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Jan 14;269(2):802-4.

Active site mapping of affinity-labeled rat oxidosqualene cyclase

Affiliations
  • PMID: 8288628
Free article
Comparative Study

Active site mapping of affinity-labeled rat oxidosqualene cyclase

I Abe et al. J Biol Chem. .
Free article

Abstract

Rat liver oxidosqualene cyclase (OSC), a 78-kDa membrane-bound enzyme, was purified and labeled with the mechanism-based irreversible inhibitor, [3H]29-methylidene-2,3-oxidosqualene (Abe, I., Bai, M., Xiao, X.-Y., and Prestwich, G. D. (1992) Biochem. Biophys. Res. Commun. 187, 32-38). A 6-kDa CNBr peptide was separated by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to a polyvinylidene difluoride membrane. The sequence of the first 30 amino acids of this peptide were determined by Edman degradation and showed unexpectedly high similarity to the fungal OSC from Candida albicans (50% identity with Arg413-Val442) and to the bacterial squalene cyclase from Alicyclobacillus (formerly Bacillus) acidocaldarius (37% identity with Lys356-Leu385). Further, radioanalysis clearly established that the two adjacent Asp residues in the highly conserved region (Asp-Asp-Thr-Ala-Glu-Ala or DDTAEA) were equally labeled by the irreversible inhibitor. This result provides the first information on the structural details of the active site of OSC and shows for the first time the ancient lineage of this vertebrate enzyme to ancestral eukaryotic and prokaryotic cyclases. Interestingly, the covalently modified DDXX(D/E) sequence of rat liver OSC showed surprising similarity to the putative allylic diphosphate binding site sequence of sesquiterpene cyclases and prenyl transferases.

PubMed Disclaimer

Publication types

LinkOut - more resources