Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 14;269(2):860-7.

Functional coupling of Na+/H+ and Na+/Ca2+ exchangers in the alpha 1-adrenoreceptor-mediated activation of hepatic metabolism

Affiliations
  • PMID: 8288639
Free article

Functional coupling of Na+/H+ and Na+/Ca2+ exchangers in the alpha 1-adrenoreceptor-mediated activation of hepatic metabolism

E Urcelay et al. J Biol Chem. .
Free article

Abstract

The purpose of this study was to characterize the role of ions other than Ca2+ in hepatic responses to alpha 1-adrenergic stimulation. We report that the alpha 1-adrenoreceptor activation of hepatic functions is accompanied by extracellular acidification and an increase in intracellular pH. These effects are dependent on extracellular Na+ concentration and are inhibited by the Na+/H+ antiporter blocker 5-(N-ethyl-N-isopropyl) amiloride under conditions that preclude antagonistic effects on agonist binding. Thus, the activation of plasma membrane Na+/H+ exchange is an essential feature of the hepatic alpha-adrenoreceptor-coupled signaling pathway. The following observations indicate that the sustained hepatic alpha 1-adrenergic actions rely on a functional coupling between the plasma membrane Na+/H+ and Na+/Ca2+ exchangers, resulting in the stimulation of Ca2+ influx. 1) Inhibition of the Na+/K(+)-ATPase does not prevent the alpha 1-adrenergic effects. However, alpha 1-adrenoreceptor stimulation fails to induce intracellular alkalinization and to acidify the extracellular medium in the absence of extracellular Ca2+. 2) A non-receptor-induced increase in intracellular Na+ concentration, caused by the ionophore monensin, stimulates Ca2+ influx and increases vascular resistance. 3) Inhibition of Na+/Ca2+ exchange prevents, in a concentration-dependent manner, most of the alpha 1-agonist-induced responses. 4) The actions of Ca(2+)-mobilizing vasoactive peptide receptors or alpha 2-adrenoreceptors, which produce neither sustained extracellular acidification nor release of Ca2+, are insensitive to Na+/H+ exchange blockers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources