Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 21;235(3):825-47.
doi: 10.1006/jmbi.1994.1042.

The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo

Affiliations

The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo

J Bednar et al. J Mol Biol. .

Abstract

A cryo-electron microscopy study of supercoiled DNA molecules freely suspended in cryo-vitrified buffer was combined with Monte Carlo simulations and gel electrophoretic analysis to investigate the role of intersegmental electrostatic repulsion in determining the shape of supercoiled DNA molecules. It is demonstrated here that a decrease of DNA-DNA repulsion by increasing concentrations of counterions causes a higher fraction of the linking number deficit to be partitioned into writhe. When counterions reach concentrations likely to be present under in vivo conditions, naturally supercoiled plasmids adopt a tightly interwound conformation. In these tightly supercoiled DNA molecules the opposing segments of interwound superhelix seem to directly contact each other. This form of supercoiling, where two DNA helices interact laterally, may represent an important functional state of DNA. In the particular case of supercoiled minicircles (178 bp) the delta Lk = -2 topoisomers undergo a sharp structural transition from almost planar circles in low salt buffers to strongly writhed "figure-eight" conformations in buffers containing neutralizing concentrations of counterions. Possible implications of this observed structural transition in DNA are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources