An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA
- PMID: 8290341
- PMCID: PMC310462
- DOI: 10.1093/nar/21.25.5838
An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA
Abstract
The RNA polymerase gene (gene 1) of the human coronavirus 229E is approximately 20 kb in length and is located at the 5' end of the positive-strand genomic RNA. The coding sequence of gene 1 is divided into two large open reading frames, ORF1a and ORF1b, that overlap by 43 nucleotides. In the region of the ORF1a/ORF1b overlap, the genomic RNA displays two elements that are known to mediate (-1) ribosomal frameshifting. These are the slippery sequence, UUUAAAC, and a 3' pseudoknot structure. By introducing site-specific mutations into synthetic mRNAs, we have analysed the predicted structure of the HCV 229E pseudoknot and shown that besides the well-known stem structures, S1 and S2, a third stem structure, S3, is required for a high frequency of frameshifting. The requirement for an S3 stem is independent of the length of loop 2.
Similar articles
-
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.Adv Virus Res. 2016;96:165-192. doi: 10.1016/bs.aivir.2016.08.001. Epub 2016 Sep 10. Adv Virus Res. 2016. PMID: 27712623 Free PMC article. Review.
-
Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses.J Gen Virol. 2000 Jun;81(Pt 6):1473-84. doi: 10.1099/0022-1317-81-6-1473. J Gen Virol. 2000. PMID: 10811931
-
Characterization of the human coronavirus 229E (HCV 229E) gene 1.Adv Exp Med Biol. 1993;342:75-9. doi: 10.1007/978-1-4615-2996-5_12. Adv Exp Med Biol. 1993. PMID: 8209774
-
Nucleotide sequence of the human coronavirus 229E RNA polymerase locus.Virology. 1993 Aug;195(2):680-91. doi: 10.1006/viro.1993.1419. Virology. 1993. PMID: 8337838 Free PMC article.
-
[Coronaviruses].Uirusu. 2011 Dec;61(2):205-10. doi: 10.2222/jsv.61.205. Uirusu. 2011. PMID: 22916567 Review. Japanese.
Cited by
-
Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development.FASEB J. 2021 May;35(5):e21573. doi: 10.1096/fj.202100280RR. FASEB J. 2021. PMID: 33913206 Free PMC article. Review.
-
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.Adv Virus Res. 2016;96:165-192. doi: 10.1016/bs.aivir.2016.08.001. Epub 2016 Sep 10. Adv Virus Res. 2016. PMID: 27712623 Free PMC article. Review.
-
Nidovirales: evolving the largest RNA virus genome.Virus Res. 2006 Apr;117(1):17-37. doi: 10.1016/j.virusres.2006.01.017. Epub 2006 Feb 28. Virus Res. 2006. PMID: 16503362 Free PMC article. Review.
-
The coronavirus replicase: insights into a sophisticated enzyme machinery.Adv Exp Med Biol. 2006;581:3-11. doi: 10.1007/978-0-387-33012-9_1. Adv Exp Med Biol. 2006. PMID: 17037497 Free PMC article. Review. No abstract available.
-
A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses.Biomed Res Int. 2013;2013:984028. doi: 10.1155/2013/984028. Epub 2013 Nov 4. Biomed Res Int. 2013. PMID: 24298557 Free PMC article.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases