Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 21;269(3):1744-9.

A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily

Affiliations
  • PMID: 8294423
Free article

A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily

S K Nigam et al. J Biol Chem. .
Free article

Abstract

The major proteins in the lumen of the endoplasmic reticulum (ER) are thought to function in Ca2+ sequestration or as "molecular chaperones" in the folding and assembly of membrane or secreted proteins. Based on the ability of many chaperones to bind selectively to unfolded proteins and to dissociate from them upon ATP hydrolysis, we developed an affinity chromatography method to isolate proteins with these characteristics from pancreatic or liver ER. Seven ER proteins bound selectively to denatured protein columns and were specifically eluted by ATP (10(-6) M) but not by a nonhydrolyzable ATP analog. These proteins were identified with antibodies and microsequencing as the ER chaperone BiP (grp78), grp94, calreticulin, a novel 46-kDa protein that binds azido-ATP, as well as three members of the thioredoxin superfamily: protein-disulfide isomerase, ERp72, and a previously reported 50-kDa protein (p50). This set of seven proteins bound to and was eluted with ATP from a variety of denatured proteins, including histone, gelatin, alpha fetoprotein, thyroglobulin, lysozyme, casein, and IgG. The release of grp94, protein-disulfide isomerase, ERp72, calreticulin, and p50 was stimulated by Ca2+ in the presence of ATP. These proteins thus appear to function as Ca(2+)-dependent chaperones, which may account for the Ca2+ and ATP requirement for protein folding in the ER.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources