Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;26(4):291-300.
doi: 10.1002/cm.970260404.

Smooth muscle myosin subfragment-1 is a kinetic analogue for heavy meromyosin in the extended conformation

Affiliations

Smooth muscle myosin subfragment-1 is a kinetic analogue for heavy meromyosin in the extended conformation

J S Drew et al. Cell Motil Cytoskeleton. 1993.

Abstract

The 10S-->6S (Flexed-->Extended) transition in smooth muscle myosin is related to increased ATPase activity, but there is controversy over whether the analogous 9S-->7S transition in HMM is also associated with ATPase activity. We therefore studied the association of ionic strength, phosphorylation, and ATPase activity for HMM as compared to S1 which has no apparent flexed conformation. In addition, we performed both steady state and single turnover analyses, to control for artifacts due to multiple subfragment populations that might skew steady state results. At low ionic strength where myosin and HMM are in the flexed conformation, HMM had a near zero ATPase activity while S-1 had a high ATPase rate (0.07 s-1). At 400 mM ionic strength, where both myosin and HMM are in the extended conformation, S1 and HMM had the same ATPase rate (0.04 s-1). Phosphorylation did not affect S1 significantly, but shifted the HMM curve to higher rates at lower ionic strengths. Both steady state and single turnover experiments gave the same results, indicating that steady state results were not skewed by multiple subfragment populations. These data indicate that HMM has a conformation-ATPase relation similar to that observed with myosin. Furthermore, these findings suggest that the S1 ATPase rate corresponds to that of HMM in the extended conformation.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources