Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans
- PMID: 8300631
Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (Nmt) transfers myristate from CoA to the N-terminal Gly residue of cellular proteins in an ordered reaction mechanism that first involves binding of myristoyl-CoA to the apoenzyme. The gene encoding Saccharomyces cerevisiae Nmt1p (NMT1) is essential for vegetative growth. Candida albicans, Cryptococcus neoformans var. neoformans, and Histoplasma capsulatum are the principal causes of systemic fungal infections in immunocompromised humans. Metabolic labeling studies indicate that they synthesize a small set of cellular N-myristoylproteins during exponential growth on rich media, the most prominent of which co-migrate with two essential functionally interchangeable S. cerevisiae N-myristoylproteins, ADP ribosylation factor-1 (Arf1p) and Arf2p. NMT and ARF genes have been recovered from C. neoformans and H. capsulatum using the polymerase chain reaction. They are single copy genes, interrupted by multiple introns. C. neoformans and H. capsulatum Nmts have approximately 50% amino acid sequence identity with the orthologous S. cerevisiae, C. albicans, and Homo sapiens N-myristoyltransferases, whereas C. neoformans and H. capsulatum Arfs are approximately 80% identical with C. albicans Arf and S. cerevisiae Arf1p and Arf2p. Functional studies of C. neoformans and C. albicans Nmts conducted in Escherichia coli reveal that (i) both efficiently acylate S. cerevisiae Arf2p; (ii) C. neoformans Arf is a substrate for C. neoformans Nmt; and (iii) substitution of an Asp for a Gly located 5 residues from the C terminus of these two enzymes causes marked temperature-dependent reductions in their catalytic efficiency, just as it does with S. cerevisiae and H. sapiens Nmts. Wild type C. neoformans, C. albicans, and H. sapiens NMTs can fully complement the lethal phenotype of a S. cerevisiae nmt1 null allele at 24 and 37 degrees C when the GAL1-10 promoter controlling their expression is induced by galactose. Only the C. albicans enzyme is able to do so when the promoter is repressed with glucose. This complementation profile likely arises, at least in part, from differences in the protein substrate specificities of the orthologous Nmts. A Gly-->Asp mutation in S. cerevisiae, C. neoformans, C. albicans, and H. sapiens Nmts produces temperature-sensitive growth arrest in isogenic S. cerevisiae strains with a nmt1 null allele. Growth of strains producing the mutant C. albicans or H. sapiens, but not the C. neoformans, enzyme can be rescued by myristate at the non-permissive temperature (37 degrees C) even in the presence of cerulenin, an inhibitor of fatty acid synthetase.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Genetic and biochemical studies of a mutant Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase, nmt72pLeu99-->Pro, that produces temperature-sensitive myristic acid auxotrophy.J Biol Chem. 1993 Jan 5;268(1):483-94. J Biol Chem. 1993. PMID: 8416952
-
Studies of the catalytic activities and substrate specificities of Saccharomyces cerevisiae myristoyl-coenzyme A: protein N-myristoyltransferase deletion mutants and human/yeast Nmt chimeras in Escherichia coli and S. cerevisiae.J Biol Chem. 1992 Nov 25;267(33):23852-61. J Biol Chem. 1992. PMID: 1429724
-
The Candida albicans myristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli.J Biol Chem. 1992 Apr 25;267(12):8591-8. J Biol Chem. 1992. PMID: 1569105
-
Selective peptidic and peptidomimetic inhibitors of Candida albicans myristoylCoA: protein N-myristoyltransferase: a new approach to antifungal therapy.Biopolymers. 1997;43(1):43-71. doi: 10.1002/(SICI)1097-0282(1997)43:1<43::AID-BIP5>3.0.CO;2-0. Biopolymers. 1997. PMID: 9174411 Review.
-
Fungal Pathogens: Survival and Replication within Macrophages.Cold Spring Harb Perspect Med. 2014 Nov 10;5(7):a019661. doi: 10.1101/cshperspect.a019661. Cold Spring Harb Perspect Med. 2014. PMID: 25384769 Free PMC article. Review.
Cited by
-
N-myristoylation: from cell biology to translational medicine.Acta Pharmacol Sin. 2020 Aug;41(8):1005-1015. doi: 10.1038/s41401-020-0388-4. Epub 2020 Mar 18. Acta Pharmacol Sin. 2020. PMID: 32203082 Free PMC article. Review.
-
All about that fat: Lipid modification of proteins in Cryptococcus neoformans.J Microbiol. 2016 Mar;54(3):212-22. doi: 10.1007/s12275-016-5626-6. Epub 2016 Feb 27. J Microbiol. 2016. PMID: 26920881 Free PMC article. Review.
-
Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action.Clin Microbiol Rev. 1999 Oct;12(4):583-611. doi: 10.1128/CMR.12.4.583. Clin Microbiol Rev. 1999. PMID: 10515904 Free PMC article. Review.
-
Recombinant bovine spleen myristoyl CoA: protein N-myristoyltransferase.Mol Cell Biochem. 1998 Dec;189(1-2):91-7. doi: 10.1023/a:1006861417562. Mol Cell Biochem. 1998. PMID: 9879658
-
Cutaneous presentation of progressive disseminated histoplasmosis nine years after renal transplantation.Transpl Infect Dis. 2013 Apr;15(2):E64-9. doi: 10.1111/tid.12059. Epub 2013 Feb 6. Transpl Infect Dis. 2013. PMID: 23387927 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials