Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1975;210(1):1-41.
doi: 10.1007/BF00453706.

[New morphologic principles of the physiology of smell and taste]

[Article in German]
Affiliations
Review

[New morphologic principles of the physiology of smell and taste]

[Article in German]
K H Andres. Arch Otorhinolaryngol. 1975.

Abstract

New results as revealed by scanning and transmission electron microscopy have given us further knowledge about the structure of the olfactory region of vertebrates. With comparative studies we are now able to discuss the functional relationship of this region. In all vertebrates the olfactory cell is a primary sensory cell. The apical segment of the olfactory cell with its olfactory vesicle is involved in the formation of the olfactory border. As a rule of the receptor possesses cilia or cilia-like processes. These are absent in the olfactory receptor of the shark, the microvillus receptor of the fish and the olfactory cell of Jabonsons organ of amphibians, reptiles and mammals. The odorous substances in the fish are brought to the receptor membrane by the water flow. In air breathing vertebrates a terminal film is present. This film is a product of secretion from the Bowmans glands. Gasous odorous substances must first be dissolved in the terminal film and penetrate it before reaching the receptor membrane. The cilia-like olfactory process of the fish in the proximal segment is not essentially different from the kinocilia of the supporting cell, except that they are shorter. In contrast the olfactory cell of air-breathing vertebrates form cilia-like processes with a short cilia-like proximal segment and a long and very thin distal end piece. In the amphibians and sauropsidians the end pieces can have a length of up to 150 mu and up to 80 mu in mammals. The olfactory vesicles with its processes undergo continuous regeneration. The olfactory epithelium of man show the same structural formation as observed in other mammals. Regressive changes in the adult can lead to a reduction in the number of sensory cells and also to a flattening of the epithelium. Morphological criteria for regenerative processes in the sensory cell structures are present. A specialized olfactory cell type has been found in some teleosts. This cell is characterized by a small pit below the olfactory border in which the cilia of the olfactory cell are redrawn. There is some evidence that this olfactory cell type may be compared with the olfactory cells in the parafollicular tubes of lamprey. The so called rod-shaped receptor in the olfactory mucosa of fishes has no axon and is therefore no olfactory cell. The same kind of cell is also present in the olfactory mucosa of air-breathing animals. We classify this cell as brush cell.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Z Zellforsch Mikrosk Anat. 1970;105(4):498-514 - PubMed
    1. Brain Res. 1968 Mar;7(3):483-6 - PubMed
    1. J Anat. 1965 Oct;99(Pt 4):791-813 - PubMed
    1. Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1971;200(3):252-74 - PubMed
    1. J Ultrastruct Res. 1967 Mar;17(5):487-502 - PubMed

LinkOut - more resources