Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;266(1 Pt 1):L30-7.
doi: 10.1152/ajplung.1994.266.1.L30.

Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia

Affiliations

Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia

J F Haskell et al. Am J Physiol. 1994 Jan.

Abstract

We investigated whether exposure of rats to sublethal hyperoxia (85% O2 for 7 days) raises the levels of proteins antigenically related to Na+ channels in alveolar type II (ATII) cells and, if so, whether this rise was accompanied by an increase in conductive Na+ transport in vitro. ATII cells were isolated from the lungs of these rats at the end of the exposure period. In Western blot studies, a polyclonal antibody raised against Na+ channel protein (NaAb), recognized in a specific manner a 135 +/- 10 kDa polypeptide in plasma membrane vesicles of ATII cells from both control and oxygen-exposed rats. However, higher levels of immunoreactivity were seen in ATII cells from oxygen-exposed rats. When ATII cells were patched in the whole cell mode using symmetrical solutions (150 mM Na(+)-glutamate), outward rectified Na+ currents were observed. When corrected for cell capacitance, both inward and outward currents of ATII cells from rats exposed to hyperoxia were significantly higher than control. Addition of either 1 microM amiloride or 1 microM 5-(N-ethyl-N-isopropyl)-2'-4'-amiloride in the bath solution decreased the magnitude of outward currents of both control and hyperoxic ATII cells by approximately 50%. Taken together, these results indicate that exposure of rats to sublethal hyperoxia results in upregulation of ATII cell conductive pathways with low affinity to amiloride and increased Na+ transport. This may be an early adaptive response that limits the degree of alveolar edema in injured lungs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources