Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;87(1):43-50.
doi: 10.1016/0928-4257(93)90023-m.

Lack of involvement of [Ca2+]i in the external Ca(2+)-independent release of acetylcholine evoked by veratridine, ouabain and alpha-latrotoxin: possible role of [Na+]i

Affiliations

Lack of involvement of [Ca2+]i in the external Ca(2+)-independent release of acetylcholine evoked by veratridine, ouabain and alpha-latrotoxin: possible role of [Na+]i

V Adam-Vizi et al. J Physiol Paris. 1993.

Abstract

Synaptosomes were challenged by veratridine, ouabain and alpha-latrotoxin, and the release of 14C-acetylcholine (ACh) was measured in the absence of external Ca2+. We wished to test whether Ca2+ mobilized from internal stores triggered the ACh release that was independent of external Ca2+. We found that none of the agents altered the [Ca2+]i in a Ca(2+)-free medium. Buffering the intracellular Ca2+ concentration with BAPTA did not prevent the increase in release of 14C-ACh by veratridine or ouabain in the absence of Ca2+, however, it greatly reduced the release evoked in a Ca(2+)-containing medium. In parallel samples the release of ACh and the change in the internal Na+ concentration ([Na+]i) were measured. It was found that veratridine, ouabain and alpha-latrotoxin all enhanced [Na+]i in a concentration-dependent manner and a good quantitative relationship existed between the increase in [Na+]i and the release of ACh.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources