Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb 11;269(6):4317-26.

Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes

Affiliations
  • PMID: 8307999
Free article

Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes

J D Morrow et al. J Biol Chem. .
Free article

Abstract

We recently reported the discovery that a series of novel prostaglandin (PG)F2-like compounds (F2-isoprostanes) are produced in vivo independent of the cyclooxygenase as products of free radical-catalyzed lipid peroxidation. F2-isoprostanes are initially formed in situ from arachidonic acid esterified to phospholipids and then released preformed. We have now investigated whether PGD2/E2-like isoprostanes are also produced by rearrangement of the PGG2-like intermediates involved in isoprostane formation. Using a variety of approaches utilizing mass spectrometry, compelling evidence was obtained for the presence of D2/E2-isoprostane-containing phosphospholipids in the liver (85 +/- 33 ng/g of liver) and free D2/E2-isoprostanes in the circulation (215 +/- 90 pg/ml) of rats treated with CCl4 to induce lipid peroxidation. In untreated rats, levels of D2/E2-isoprostanes esterified in liver phospholipids were much lower (0.90 +/- 0.10 ng/g), and free compounds could not be detected in the circulation (< 5 pg/ml). Interestingly, one of the E2-isoprostanes that would be expected to be formed in abundance, 8-epi-PGE2, was found to be a potent renal vasoconstrictor, and these effects could be abrogated by SQ29548, a thromboxane receptor antagonist. Further understanding of the biological consequences of the formation of these novel compounds and factors that influence their formation may provide valuable insights into the pathophysiology of oxidant injury.

PubMed Disclaimer

Publication types

LinkOut - more resources