Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Nov-Dec;20(6):1675-84.
doi: 10.1118/1.596954.

Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography

Affiliations
Comparative Study

Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography

X L Xu et al. Med Phys. 1993 Nov-Dec.

Abstract

In this paper, a unified framework of iterative algebraic reconstruction for emission computed tomography (ECT) and its application to positron emission tomography (PET) is presented. The unified framework is based on an algebraic image restoration model and contains conventional iterative algebraic reconstruction algorithms: ART, SIRT, Landweber iteration (LWB), the generalized Landweber iteration (GLWB), the steepest descent method (STP), as well as iterative filtered backprojection (IFBP) reconstruction algorithms: Chang's method, Walters' method, and a modified iterative MAP. The framework provides an effective tool to systematically study conventional iterative algebraic algorithms and IFBP algorithms. Based on this framework, conventional iterative algebraic algorithms and IFBP algorithms are generalized. It is shown from the algebraic point of view that IFBP algorithms are not only excellent methods for correction of attenuation (either uniform or nonuniform) but are also good general iterative reconstruction algorithms (they can be applied to either attenuated or attenuation-free projections and converge very fast). The convergence behavior of iterative algebraic algorithms is discussed and insight is drawn into the fast convergence property of IFBP algorithms. A simulated PET system is used to evaluate IFBP algorithms and LWB in comparison with the maximum likelihood estimation via expectation maximization algorithm (MLE-EM) and the filtered backprojection (FBP) algorithm. The simulation results indicate that for both attenuation-free projection and attenuated projection cases IFBP algorithms have a significant computational advantage over LWB and MLE-EM, and have performance advantages over FBP in terms of contrast recovery and/or noise-to-signal ratios (NSRs) in regions of interest.

PubMed Disclaimer

Publication types

LinkOut - more resources