Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Sep;144(7):529-37.
doi: 10.1016/0923-2508(93)90002-j.

The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations

Affiliations
Free article

The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations

A Death et al. Res Microbiol. 1993 Sep.
Free article

Abstract

Glucose limitation in chemostats derepressed the binding-protein-dependent Mgl transport system, which is strongly repressed during growth in batch culture with high glucose levels. The limitation-induced Mgl activity was higher than that of batch cultures "fully induced" for the Mgl system after growth on glycerol plus fucose. Mgl- strains were impaired compared to Mgl+ bacteria in removing glucose from sugar-limited chemostats and were outcompeted in mixed continuous culture on limiting glucose. The influence of Mgl was not observed on growth with limiting maltose or non-carbohydrates, and thus was specific for glucose, a known substrate of the Mgl system. In the absence of the two glucose-specific membrane components of the phosphoenolpyruvate:sugar phosphotransferase system, non-PTS-dependent growth on glucose was observed in continuous culture, but only under sugar-limited conditions derepressing the Mgl system and not in glucose-rich batches or continuous culture. Hence growth of Escherichia coli on glucose at micromolar concentrations involves a significant contribution of a binding-protein-dependent transport system. The participation of multiple transporters in glucose transport can account for the complex non-hyperbolic dependence of growth-rate on glucose concentration and for discrepancies in studies attempting to describe growth on glucose purely in terms of phosphotransferase kinetics.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources