Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb 15;33(6):1287-94.
doi: 10.1021/bi00172a001.

Crystal structure of orotate phosphoribosyltransferase

Affiliations

Crystal structure of orotate phosphoribosyltransferase

G Scapin et al. Biochemistry. .

Abstract

Phosphoribosyltransferases (PRTases) are enzymes involved in the synthesis of purine, pyrimidine, and pyridine nucleotides. They utilize alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) and a nitrogenous base to form a beta-N-riboside monophosphate and pyrophosphate (PPi), and their functional significance in nucleotide homeostasis is evidenced by the devastating effects of inherited diseases associated with the decreased activity and/or stability of these enzymes. The 2.6-A structure of the Salmonella typhimurium orotate phosphoribosyltransferase (OPRTase) complexed with its product orotidine monophosphate (OMP) provides the first detailed image of a member of this group of enzymes. The OPRTase three-dimensional structure was solved using multiple isomorphous replacement methods and reveals two major features: a core five-stranded alpha/beta twisted sheet and an N-terminal region that partially covers the C-terminal portion of the core. PRTases show a very high degree of base specificity. In OPRTase, this is determined by steric constraints and the position of hydrogen bond donors/acceptors of a solvent-inaccessible crevice where the orotate ring of bound OMP resides. Crystalline OPRTase is a dimer, with catalytically important residues from each subunit available to the neighboring subunit, suggesting that oligomerization is necessary for its activity. On the basis of the presence of a common PRPP binding motif among PRTases and the similar chemistry these enzymes perform, we propose that the alpha/beta core found in OPRTase will represent a common feature for PRTases. This generality is demonstrated by construction of a model of the human hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) from secondary structure predictions for HGPRTase and the three-dimensional structure of OPRTase.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources