Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb 22;1225(3):255-8.
doi: 10.1016/0925-4439(94)90003-5.

The involvement of the Ca-dependent K channel and of the KCl co-transport in sickle cell dehydration during cyclic deoxygenation

Affiliations

The involvement of the Ca-dependent K channel and of the KCl co-transport in sickle cell dehydration during cyclic deoxygenation

M Apovo et al. Biochim Biophys Acta. .

Abstract

We have investigated the mechanisms involved in sickle cell dehydration upon continuous or cyclic deoxygenation: the Ca(2+)-activated K+ channel and the KCl co-transport system. Short-term continuous deoxygenation (1 h) of sickle cells in a Ca(2+)-containing medium promoted a stimulation of the efflux of K+ and cell dehydration. This latter was reduced by the replacement of Ca2+ in the medium by EGTA, but not by addition of [(dihydro-indenyl) oxy] alkanoic acid (DIOA), an inhibitor of the KCl co-transport. During cycles of deoxygenation-reoxygenation, cell dehydration was partly prevented by EGTA and significantly reduced by DIOA only in the presence of Ca2+. The present data support the view that sickle cell dehydration during deoxygenation arises from the stimulation of the Ca(2+)-dependent K+ permeability leading to water loss, whereas during reoxygenation periods, subsequent activation of the KCl co-transport also contributes to cell dehydration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources