Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan 15;56(2):224-8.
doi: 10.1002/ijc.2910560214.

Changes in perfusion of mouse tumours after photodynamic therapy

Affiliations

Changes in perfusion of mouse tumours after photodynamic therapy

I P van Geel et al. Int J Cancer. .

Abstract

The influence of photodynamic therapy (PDT) on vascular perfusion was investigated in 2 s.c. mouse tumours, a radiation-induced fibrosarcoma (RIF I) and a squamous-cell carcinoma (SCCVII). The 86Rb extraction technique was used to measure changes in perfusion relative to cardiac output at various intervals after interstitial PDT. Control groups showed that vascular perfusion in the RIF I tumours decreased with increasing tumour size. For both tumours, of constant size, vascular perfusion decreased to less than 10% of control values within 5 min after high PDT doses. Significant decreases in vascular perfusion were also seen after lower, sub-curative doses. Thereafter there was slow recovery towards control levels. Photofrin given at shorter intervals before illumination generally resulted in even larger decreases in tumour perfusion, and slower recovery. Comparison of tumour perfusion measurements after PDT with tumour response revealed an inverse correlation with tumour growth delay both for the RIF I and for the SCCVII tumours. PDT with sub-curative light doses appears to decrease vascular perfusion in the RIF I and SCCVII for a period of at least 24 hr. The most severe reductions in tumour blood flow were associated with the longest regrowth delays, indicating a major role of vascular damage in tumour response to PDT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources