Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul 5;268(19):13791-8.

Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition

Affiliations
  • PMID: 8314748
Free article

Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition

J G Pastorino et al. J Biol Chem. .
Free article

Abstract

Cyclosporin A (CyA) and L-carnitine (LC) prevented the killing of cultured hepatocytes by anoxia and rotenone but not by cyanide. Neither CyA nor LC affected the rate or extent of the loss of the mitochondrial membrane potential or the rate or extent of the depletion of ATP. Atractyloside blocked the ability of both CyA and LC to protect, and D-carnitine antagonized the effect of LC but not that of CyA. Cell killing by cyanide was prevented when the phospholipase A2 inhibitor butacaine was added together with CyA. Butacaine by itself had no effect on cell killing. In a swelling assay with isolated rat liver mitochondria having a low calcium content, phenylarsine oxide or palmitoyl-CoA induced the inner membrane permeability transition when electron transport was inhibited by rotenone or cyanide. CyA prevented the permeability transition with rotenone but not with cyanide, and atractyloside reversed the effect of CyA. LC prevented the permeability transition occurring with palmitoyl-CoA plus rotenone but not with palmitoyl-CoA plus cyanide. Atractyloside and D-carnitine antagonized the protective effect of LC. Inhibition of the cyanide-dependent permeability transition in isolated liver mitochondria required the presence of both CyA and butacaine. These data document the close correlation between the effect of CyA and LC on the response of cultured hepatocytes to inhibition of mitochondrial electron transport and their ability to prevent the permeability transition in isolated mitochondria. It is concluded that the ability of CyA and LC to protect cultured hepatocytes is a consequence of their ability to prevent the mitochondrial permeability transition, indicating that this event is likely to be causally linked to the genesis of irreversible injury. Thus, cell death with anoxia or inhibitors of electron transport is related to a mitochondrial alteration by a mechanism that is independent of the maintenance of a membrane potential or cellular stores of ATP.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources