Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar:104 ( Pt 3):773-82.
doi: 10.1242/jcs.104.3.773.

Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat

Affiliations

Immunohistochemical localization of adherens junction components in blood-brain barrier microvessels of the rat

C Schulze et al. J Cell Sci. 1993 Mar.

Abstract

The morphology and molecular composition of intercellular adherens junctions have most frequently been described in epithelial cells and the fascia adhaerens of the intercalated disc. A group of cytoplasmic molecules is known to be associated with adherens junctions. The intercellular bond is mediated by cadherins which bridge the cells by homophilic binding. Recently, endothelial cells have also been shown to form intercellular junctions of the adherens-type. However, they are morphologically less distinct and little is known about their molecular components. In this study we report the localization of some adherens junction components in intact microvessels of the blood-brain barrier in the rat. We used antibodies raised against alpha-actinin, vinculin, zyxin, cadherin (antipan-cadherin antibody) and A-CAM (N-cadherin) in immunohistochemical experiments at light and electron microscopical levels. Microvessel walls reacted positively for all antigens throughout postnatal development. All antigens were localised, though not necessarily exclusively, to interendothelial junctions. At the ultrastructural level, pan-cadherin reactivity was present throughout the entire length of the cleft. These results could mean that in blood-brain barrier endothelial cells the complex tight junction is embedded in an adherens junction which occupies the entire length of the cleft.

PubMed Disclaimer

Publication types

LinkOut - more resources