Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Apr;8(2):343-55.
doi: 10.1111/j.1365-2958.1993.tb01578.x.

Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria

Affiliations
Comparative Study

Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria

J Versalovic et al. Mol Microbiol. 1993 Apr.

Abstract

The macromolecular synthesis (MMS) operon contains three essential genes (rpsU, dnaG, rpoD) whose products (S21, primase, sigma-70) are necessary for the initiation of protein, DNA, and RNA synthesis respectively. PCR amplifications with primers complementary to conserved regions within these three genes, and subsequent DNA sequencing of rpsU-dnaG PCR products, demonstrate that the three genes appear to be contiguous in 11 different Gram-negative species. Within the Gram-negative enteric bacterial lineage, the S21 amino acid sequence is absolutely conserved in 10 species examined. The putative nuteq antiterminator sequence in rpsU consists of two motifs, boxA and boxB, conserved in primary sequence and secondary structure. The terminator sequence, T1, located between rpsU and dnaG is conserved at 31 positions in nine enterobacterial species, suggesting the importance of primary sequence in addition to secondary structure for transcription termination. The intergenic region between rpsU and dnaG varies in size owing to the presence or absence of the Enterobacterial Repetitive Intergenic Consensus (ERIC) DNA element. The rpoD gene contains rearrangements involving a divergent sequence, although two carboxy-terminal regions which encode functional domains are conserved in primary sequence and spacing. Our data suggest that primary sequence divergence and DNA rearrangements in both coding and non-coding sequences account for the interspecies variation in operon structure. However, MMS operon gene organization and cis-acting regulatory sequences appear to be conserved in diverse bacteria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources