Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun 25;260(5116):1953-5.
doi: 10.1126/science.8316835.

The function of GRB2 in linking the insulin receptor to Ras signaling pathways

Affiliations

The function of GRB2 in linking the insulin receptor to Ras signaling pathways

E Y Skolnik et al. Science. .

Abstract

Insulin-induced activation of extracellular signal-regulated kinases [ERKs, also known as mitogen-activated protein (MAP) kinases] is mediated by Ras. Insulin activates Ras primarily by increasing the rate of guanine nucleotide-releasing activity. Here, we show that insulin-induced activation of ERKs was enhanced by stable overexpression of growth factor receptor-bound protein 2 (GRB2) but not by overexpression of GRB2 proteins with point mutations in the Src homology 2 and 3 domains. Moreover, a dominant negative form of Ras (with Ser17 substituted with Asn) blocked insulin-induced activation of ERKs in cells that overexpressed GRB2. GRB2 overexpression led to increased formation of a complex between the guanine nucleotide-releasing factor Sos (the product of the mammalian homolog of son of sevenless gene) and GRB2. In response to insulin stimulation, this complex bound to tyrosine-phosphorylated IRS-1 (insulin receptor substrate-1) and Shc. In contrast to the activated epidermal growth factor receptor that binds the GRB2-Sos complex directly, activation of the insulin receptor results in the interaction of GRB2-Sos with IRS-1 and Shc, thus linking the insulin receptor to Ras signaling pathways.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources