Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan 11;16(1):140-5.
doi: 10.1021/bi00620a024.

Aromatization of delta4-androstene-3,17-dione, 19-hydroxy-delta4-androstene-3,17-dione, and 19-oxo-delta4-androstene-3,17-dione at a common catalytic site in human placental microsomes

Aromatization of delta4-androstene-3,17-dione, 19-hydroxy-delta4-androstene-3,17-dione, and 19-oxo-delta4-androstene-3,17-dione at a common catalytic site in human placental microsomes

W G Kelly et al. Biochemistry. .

Abstract

Estrogen is believed to be biosynthesized from androstenedione in placental microsomes by a multienzyme pathway in which 19-hydroxyandrostenedione and 19-oxoandrostenedione (or the hydrated form) are obligatory intermediates. However, both 19-hydroxyandrostenedione and 19-oxoandrostenedione competitively inhibited aromatization of androstenedione, and all three steroids were shown to be mutually competitive. 19-Hydroxyandrostenedione and 19-oxoandrostenedione also competed with androstenedione for binding sites in the microsomes at 4 degrees C. In confirmation of the work of Hollander (Hollander, N. (1962), Endocrinology 71, 723-728), and of Osawa and Shibata (Osawa, Y., and Shibata, K., (1973), Abstracts of the 55th Meeting of the Endocrine Society, Abstract 116) when androstenedione and 19-hydroxyandrostenedione were incubated together, both were converted to estrogen, but little androstenedione was converted to 19-hydroxyandrostenedione. Considered together, these results are incompatible with the multienzyme pathway. Rather, these results may be explained by aromatization of androstenedione at a single catalytic site via enzyme-bound transition states. Both proposed intermediates are, according to this view, by-products which can also be aromatized.

PubMed Disclaimer

Similar articles

Cited by

Publication types