Immune network behavior--I. From stationary states to limit cycle oscillations
- PMID: 8318929
- DOI: 10.1007/BF02460672
Immune network behavior--I. From stationary states to limit cycle oscillations
Abstract
We develop a model for the idiotypic interaction between two B cell clones. This model takes into account B cell proliferation, B cell maturation, antibody production, the formation and subsequent elimination of antibody-antibody complexes and recirculation of antibodies between the spleen and the blood. Here we investigate, by means of stability and bifurcation analysis, how each of the processes influences the model's behavior. After appropriate nondimensionalization, the model consists of eight ordinary differential equations and a number of parameters. We estimate the parameters from experimental sources. Using a coordinate system that exploits the pairwise symmetry of the interactions between two clones, we analyse two simplified forms of the model and obtain bifurcation diagrams showing how their five equilibrium states are related. We show that the so-called immune states lose stability if B cell and antibody concentrations change on different time scales. Additionally, we derive the structure of stable and unstable manifolds of saddle-type equilibria, pinpoint their (global) bifurcations and show that these bifurcations play a crucial role in determining the parameter regimes in which the model exhibits oscillatory behavior.
Similar articles
-
Immune network behavior--II. From oscillations to chaos and stationary states.Bull Math Biol. 1993;55(4):781-816. doi: 10.1007/BF02460673. Bull Math Biol. 1993. PMID: 8318930
-
Local and global bifurcations at infinity in models of glycolytic oscillations.J Math Biol. 1997 Dec;36(2):119-32. doi: 10.1007/s002850050093. J Math Biol. 1997. PMID: 9463107
-
Dynamic behavior of a neural network model of locomotor control in the lamprey.J Neurophysiol. 1996 Mar;75(3):1074-86. doi: 10.1152/jn.1996.75.3.1074. J Neurophysiol. 1996. PMID: 8867119
-
Bifurcations in a white-blood-cell production model.C R Biol. 2004 Mar;327(3):201-10. doi: 10.1016/j.crvi.2003.05.005. C R Biol. 2004. PMID: 15127891 Review.
-
Peripheral T cells select the B-cell repertoire in old mice.Immunol Rev. 1989 Aug;110:173-85. doi: 10.1111/j.1600-065x.1989.tb00033.x. Immunol Rev. 1989. PMID: 2676847 Review.
Cited by
-
Immune network behavior--II. From oscillations to chaos and stationary states.Bull Math Biol. 1993;55(4):781-816. doi: 10.1007/BF02460673. Bull Math Biol. 1993. PMID: 8318930
-
Memory capacity in large idiotypic networks.Bull Math Biol. 1995 Jan;57(1):109-36. doi: 10.1007/BF02458319. Bull Math Biol. 1995. PMID: 7833849
-
Bifurcations in coupled amyloid-β aggregation-inflammation systems.NPJ Syst Biol Appl. 2024 Jul 30;10(1):80. doi: 10.1038/s41540-024-00408-7. NPJ Syst Biol Appl. 2024. PMID: 39080352 Free PMC article.
-
A Cayley tree immune network model with antibody dynamics.Bull Math Biol. 1993 Nov;55(6):1091-131. doi: 10.1007/BF02460701. Bull Math Biol. 1993. PMID: 8281129
-
A mathematical design of vector vaccine against autoimmune disease.J Theor Biol. 2009 Feb 7;256(3):382-92. doi: 10.1016/j.jtbi.2008.09.038. Epub 2008 Oct 19. J Theor Biol. 2009. PMID: 18996399 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources