Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;53(3):201-7.
doi: 10.1016/0024-3205(93)90670-x.

Binding of 3H-melatonin to calmodulin

Affiliations

Binding of 3H-melatonin to calmodulin

G Benítez-King et al. Life Sci. 1993.

Abstract

Studies in melatonin mechanism of action have suggested that one of them could be the binding of the hormone to calmodulin. We assessed calmodulin-melatonin binding by combining liposome incorporation of calmodulin with separation of free and bound 3H-Melatonin by a rapid ultrafiltration method. Specific binding to calmodulin was saturable, reversible, Ca(++)-dependent, ligand selective, and showed high affinity. Saturation as well as association-dissociation studies revealed that 3H-Melatonin binds to a single site on the calmodulin molecule with a Kd of 188 pM and a total binding capacity Bmax of 35 pM/ug of calmodulin. Displacement experiments showed that the relative order of potency of some compounds for inhibition of 3H-Melatonin was as follows: Melatonin > 6-chloromelatonin > 6-hydroxymelatonin > luzindole > trifluoperazine. The results explain our previously reported melatonin effects such as cytoskeletal rearrangements, inhibition of calmodulin dependent phosphodiesterase activity as well as the modification of Ca(++)-calmodulin electrophoretic mobility. The high affinity of melatonin binding to calmodulin suggests that the hormone is able to modulate cell activity by intracellularly binding to calmodulin at physiologically ranges. Melatonin-calmodulin binding could modulate many intracellular Ca++ functions and thus, the set-point for cell activity will follow the rhythmic circulating levels of the pineal hormone. Moreover, since calmodulin and melatonin are phylogenetically well preserved compounds, their interaction may represent a primary mechanism for both the regulation and the synchronization of cell physiology.

PubMed Disclaimer

Publication types

LinkOut - more resources