Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jun;264(6 Pt 2):H1745-52.
doi: 10.1152/ajpheart.1993.264.6.H1745.

Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium

Affiliations

Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium

W J Sigurdson et al. Am J Physiol. 1993 Jun.

Abstract

In first-passage human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (passages 13-16), exposure to gentle mechanical perturbation using a micropipette caused a transient rise in intracellular calcium concentration ([Ca2+]i). The increase in calcium concentration ([Ca2+]) occurred each time the cell was nudged. Three responses were evoked in each of 27 cells using 5 independent HUVEC harvests. Increase in [Ca2+] returned to near baseline levels within approximately 30 s. The stimulus did not cause membrane puncture, as indicated by 1) absence of rapid dye leakage, 2) regulated nature of the [Ca2+] response, 3) absence of membrane blebbing, and 4) repeatable nature of the response in the same cell. As an alternative stimulus, we created very narrow fluid streams (1- to 2-microns diam) from a pressurized pipette that generated shear stresses of approximately 0.001-0.1 dyn/cm2 on the cells. However, these low-shear streams had little effect on [Ca2+]i. The poke-induced change in [Ca2+] was not blocked by lowering extracellular [Ca2+] ([Ca2+]o; 10 microM). In the absence of [Ca2+]o, however, HUVEC did not respond to the first poke, indicating a requirement for some [Ca2+]o as a mediator of signaling. After several poke-induced responses, [Ca2+]i could still be released by caffeine (100 microM), indicating the integrity of the intracellular release mechanism(s). These studies indicate that the response of an endothelial cell to a membrane-deforming event involves a priming step utilizing [Ca2+]o, which facilitates the transient increase of [Ca2+]i.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources