Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul 15;53(14):3229-32.

MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780

Affiliations
  • PMID: 8324732

MCF7/LCC2: a 4-hydroxytamoxifen resistant human breast cancer variant that retains sensitivity to the steroidal antiestrogen ICI 182,780

N Brünner et al. Cancer Res. .

Abstract

The development of resistance to the antiestrogen tamoxifen occurs in a high percentage of initially responsive patients. We have developed a new model in which to investigate acquired resistance to triphenylethylenes. A stepwise in vitro selection of the hormone-independent human breast cancer variant MCF-7/LCC1 against 4-hydroxytamoxifen produced a stable resistant population designated MCF7/LCC2. MCF7/LCC2 cells retain levels of estrogen receptor expression comparable to the parental MCF7/LCC1 and MCF-7 cells. Progesterone receptor expression remains estrogen inducible in MCF7/LCC2 cells, although to levels significantly lower than observed in MCF-7 and MCF7/LCC1 cells. MCF7/LCC2 cells form tumors in ovariectomized nude mice without estrogen supplementation, and these tumors are tamoxifen resistant but can be estrogen stimulated. Significantly, MCF7/LCC2 cells have retained sensitivity to the steroidal antiestrogen ICI 182,780. These data suggest that some breast cancer patients who acquire resistance to tamoxifen may not develop cross-resistance to treatment with steroidal antiestrogens.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms