Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Jul 28;1178(1):87-96.
doi: 10.1016/0167-4889(93)90113-4.

Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations

Affiliations
Comparative Study

Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations

M R Rich. Biochim Biophys Acta. .

Abstract

Arachidonic acid has recently gained attention as a result of current evidence indicating that it may play the role of a 'second messenger' in signal transduction processes. In order to gain insight into the mechanism behind its action, quenched molecular dynamics simulations were performed on arachidonic (20:4) and related fatty acids: linoleic (18:2), oleic (18:1), arachidic (20:0), and stearic (18:0). The angle-iron structure, representative of arachidonic acid in the crystal or very-low-temperature state, readily gave way at higher temperature to a dominant hairpin structure whereby the COOH end of arachidonic acid comes into close proximity with the C14-15 pi-bond resulting in a packed pi-bond-rich loop. The lowest energy conformer for arachidonic acid was found to be 10.65 kcal/mol below that of the energy-minimized crystal structure. In the case of saturated fatty acids, the crystal all-trans conformation remained the lowest energy form. Analysis of conformational energy contours for carbon-carbon torsion angles representative of fatty acids suggest that the flexibility of arachidonic acid is, in part, a result of the relative torsional freedom of C-C (single) bonds located between or adjacent to C = C (double) bonds. It is hypothesized that the ability of arachidonic acid to form packed structures with curved regions containing pi-bonds may allow for hydrophobic interactions with proteins, and/or hydrogen bonding between the pi-bonds of arachidonic acid and polar groups of the protein structures.

PubMed Disclaimer

Publication types

LinkOut - more resources