Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan;42(1):93-100.
doi: 10.1152/jappl.1977.42.1.93.

Experimental study of convective heat transfer coefficient for the human body in water

Experimental study of convective heat transfer coefficient for the human body in water

C Boutelier et al. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jan.

Abstract

The steady-state convective heat transfer coefficient in water has been determined by partitional calorimetry for 17 nude subjects. Four water velocities were investigated: 0, 0.05, 0.10, and 0.25 m-s-1; and the water temperature ranged from 33.7 to 18 degrees C. In still water, hc varied from 43 W-m-2-degrees C-1 in thermoneutral conditions and a shivering rate less than 90 W-m-2 to 54 W-m-2-degrees C-1 in cold water with a shiver rate greater than 110 W-m-2. The equation, hc=0.09 (Gr-Pr)0.275, give a good approximation of this coefficient. In stirred water and for the same limits of shivering, hc can be expressed as a power function of the velocity: hc = 272.9 v0.5 and hc = 497.1 v0.65, respectively. These equations show that the flow is laminar in thermoneutral conditions and intermediate between laminar and turbulent in cold water. A study of the influence of skinfold on the magnitude of hc shows that higher values of this coefficient were obtained for thin subjects than for fat ones, concomitant with more intense shivering. The utilization of a theoretical physical model for computations of hc gave excessively high values because such methods do not embody the body shape factor and reduction of water flow adjacent to the skin.

PubMed Disclaimer

LinkOut - more resources