Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 May;67(1-2):147-56.
doi: 10.1016/0378-5955(93)90242-s.

Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig

Affiliations

Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig

J J Fitzgerald et al. Hear Res. 1993 May.

Abstract

The ototoxic action of salicylate was investigated in the guinea pig by perfusion of both salicylate and bromosalicylate through scala tympani. The results qualitatively confirmed experiments using intravenous administration in cats (Stypulkowski, 1990), showing dose-dependent elevations in compound action potential (CAP) thresholds, increases in cochlear microphonics (CM) and level-dependent reductions in 2f1-f2 acoustic distortion products. The endocochlear potential was not significantly affected and iontophoretic injection of salicylate into scala media had no measurable effect on CAP thresholds, consistent with an action on the basolateral walls of the hair cells. Perfusion with indomethacin produced effects similar to those of the salicylates, but at non-physiological doses. Together with the great effectiveness of 5-bromosalicylate, this suggests that salicylate does not act by inhibiting prostaglandin synthesis. The results are qualitatively consistent with the proposition that salicylates act on the basolateral walls of the outer hair cells. However, the magnitude of the CM increases, particularly at high drug concentrations, and the fact that salicylate reduced, but did not eliminate the effects of olivocochlear efferent stimulation on CM amplitude indicate that a simple explanation for salicylate effects based solely on a conductance increase in the outer hair cell membranes may be inadequate.

PubMed Disclaimer

Publication types

LinkOut - more resources