Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 17;32(32):8259-67.
doi: 10.1021/bi00083a029.

Rate of oxidation of P680 in isolated photosystem 2 reaction centers monitored by loss of chlorophyll stimulated emission

Affiliations

Rate of oxidation of P680 in isolated photosystem 2 reaction centers monitored by loss of chlorophyll stimulated emission

J R Durrant et al. Biochemistry. .

Abstract

We have continued our studies of the primary photochemistry of isolated photosystem 2 reaction centers using femtosecond transient absorption spectroscopy. Experiments were performed over a wide range of excitation and probe wavelengths, using several data collection time scales. This has enabled us to resolve five different lifetimes ranging between 100 fs and 200 ps plus a nanosecond component. We demonstrate here and elsewhere [e.g., Durrant, J.R., Hastings, G., Joseph, D. M., Barber, J., Porter, G., & Klug, D. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636] that the kinetic spectra associated with all but two of these lifetimes are clearly distinguishable. We have previously reported that a 21-ps lifetime is associated with pheophytin reduction [Hastings, G., Durrant, J. R., Hong, Q., Barber, J., Porter, G., & Klug, D. R. (1992) Biochemistry 31, 7638-7647]. In this paper, we show that it is possible to spectrally and temporally resolve stimulated emission from PS2 reaction centers with great accuracy and that this stimulated emission is largely unaffected by those kinetic components which are faster than 21 ps. The observation of a distinct stimulated emission band allows us to distinguish charge-separated states from chlorin singlet states. In this way, we are able to show that the proportion of charge-separated states prior to the 21-ps component is between 0% and 25%. We also show that the shape of the spectrum which we obtain for the state P680+Ph- is essentially invariant between 100 ps and 9 ns, and is the same as that previously reported for P680+Ph- by other researchers.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources