Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 17;32(32):8284-90.
doi: 10.1021/bi00083a032.

Evidence for an imino intermediate in the T4 endonuclease V reaction

Affiliations

Evidence for an imino intermediate in the T4 endonuclease V reaction

M L Dodson et al. Biochemistry. .

Abstract

Reductive methylation and site-directed mutagenesis experiments have implicated the N-terminal alpha-amino group of T4 endonuclease V in the glycosylase and abasic lyase activities of the enzyme. NMR studies have confirmed the involvement of the N-terminal alpha-amino group in the inhibition of enzyme activity by reductive methylation. A mechanism accounting for these results predicts that a (imino) covalent enzyme-substrate intermediate is formed between the protein N-terminal alpha-amino group and C1' of the 5'-deoxyribose of the pyrimidine dimer substrate subsequent to (or concomitantly with) the glycosylase step. Experiments to verify the existence of this intermediate indicated that enzyme inhibition by cyanide was substrate-dependent, a result classically interpreted to imply an imino reaction intermediate. In addition, sodium borohydride reduction of the intermediate formed a stable dead-end enzyme-substrate product. This product was formed whether ultraviolet light-irradiated high molecular weight DNA or duplex oligonucleotides containing a defined thymine-thymine cyclobutane dimer were used as substrate. The duplex oligonucleotide substrates demonstrated a well-defined gel shift. This will facilitate high-resolution footprinting of the enzyme on the DNA substrate.

PubMed Disclaimer

Publication types

MeSH terms