Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Apr;278(2-3):306-15.
doi: 10.1016/s0934-8840(11)80847-9.

Activation and secretion of Serratia hemolysin

Affiliations
Review

Activation and secretion of Serratia hemolysin

V Braun et al. Zentralbl Bakteriol. 1993 Apr.

Abstract

The hemolysin of Serratia marcescens (ShlA) is secreted into the culture medium and forms small pores of a defined size in erythrocytes and in black lipid membranes. The protein is synthesized as an inactive precursor of 1608 residues which is translocated across the cytoplasmic membrane by the Sec-export system. In the absence of the outer membrane protein ShlB, the ShlA protein (designated ShlA*) stays in the periplasm and displays about 0.1% of the activity of the secreted form. Secretion of ShlA with the help of ShlB is accompanied by its conversion to the hemolytic form. A ShlA derivative consisting of the N-terminal 238 residues of ShlA is secreted by ShlB, showing that the secretion signal resides in the amino terminal part of ShlA. ShlA* can be activated in vitro by a cell lysate containing ShlB, the activated ShlA remains hemolytic upon removal of ShlB. The assumed covalent modification of ShlA* by ShlB occurs in the N-terminus of ShlA since an amino terminal fragment (M(r) 28,000) secreted by ShlB, and a trypsin fragment of ShlA (M(r) 15,000) are both able to convert ShlA* to a hemolytic protein. In contrast to the permanent modification of ShlA* by ShlB, ShlA activity achieved by complementation with the ShlA fragments is abolished upon removal of the fragments. Apparently, the N-terminal portion of ShlA contains the information for secretion through the outer membrane and for insertion into the erythrocyte membrane. This information is lacking in ShlA* formed in the absence of ShlB but contained in the ShlA fragments formed in the presence of ShlB. The latter bind to ShlA* and direct ShlA* into the erythrocyte membrane. The fragments themselves are too short to build pores. The HpmA hemolysin of Proteus mirabilis shows extensive homology to ShlA. In vitro activation of HpmA* by ShlB and complementation by the 28 kDa ShlA fragment indicates a common activation mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances