Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 15;268(23):16879-82.

Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor

Affiliations
  • PMID: 8349577
Free article

Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor

V V Gurevich et al. J Biol Chem. .
Free article

Abstract

Arrestins play an important role in regulating the activity of the G protein-coupled receptors rhodopsin and the beta 2-adrenergic receptor. Recently, we described the expression and functional characterization of visual arrestin using an in vitro translation system. Here we report the expression of beta-arrestin and development of a direct binding assay to study the interaction of arrestins with a muscarinic cholinergic receptor. In vitro translated beta-arrestin was found to specifically bind to purified reconstituted human m2 muscarinic cholinergic receptor (hm2 mAChR) in an agonist- and phosphorylation-dependent manner. Visual arrestin also bound to the hm2 mAChR, albeit to a lesser extent and with lower affinity. In an attempt to dissect the major domains responsible for determining the receptor binding specificity of arrestin and beta-arrestin, we generated several chimeric arrestins. One contained the first 340 residues of beta-arrestin followed by residues 346-404 of arrestin (BRV4), another consisted of the first 207 residues of beta-arrestin and residues 214-404 of visual arrestin (BV3), and a third had residues 1-43 of beta-arrestin replaced by residues 1-47 of arrestin (VIN1). All of these arrestins were able to specifically bind to the activated and phosphorylated form of both the hm2 mAChR and rhodopsin, with a clear preference for the muscarinic receptor. The Kd values for beta-arrestin, BRV4, BV3, VIN1, and visual arrestin binding to the hm2 mAChR were 0.48 +/- 0.06, 0.51 +/- 0.19, 1.38 +/- 0.26, 1.13 +/- 0.26, and 7.2 +/- 1.2 nM, respectively. These data demonstrate that: 1) beta-arrestin binds to the hm2 mAChR in an activation- and phosphorylation-dependent fashion, 2) visual arrestin has 15-fold lower affinity for the hm2 mAChR as compared to beta-arrestin, and 3) the N-terminal half of beta-arrestin plays a key role in determining receptor binding specificity. The use of in vitro translated arrestins to directly assess receptor binding may serve as a viable approach for elucidating the specificity and molecular mechanisms involved in receptor-arrestin interaction.

PubMed Disclaimer

Publication types

LinkOut - more resources