Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;160(1):27-34.
doi: 10.1007/BF00258142.

Pyranosone dehydratase from the basidiomycete Phanerochaete chrysosporium: improved purification, and identification of 6-deoxy-D-glucosone and D-xylosone reaction products

Affiliations

Pyranosone dehydratase from the basidiomycete Phanerochaete chrysosporium: improved purification, and identification of 6-deoxy-D-glucosone and D-xylosone reaction products

J Gabriel et al. Arch Microbiol. 1993.

Abstract

Pyranose oxidase and pyranosone dehydratase (aldos-2-ulose dehydratase), enzymes which convert in coupled reactions D-glucose to beta-pyrone cortalcerone, peaked coincidently during idiophasic growth of Phanerochaete chrysosporium under agitated conditions. The enzymes were purified from mycelial extracts of the fungus and separated from each other by hydrophobic interaction chromatography on Phenyl-Sepharose and Phenyl-Superose. Two pyranosone dehydratase activity peaks, PD I and PD II, were resolved. The major PD I fraction, consisting about 74% of the total dehydratase activity, was further purified by anion exchange chromatography on Mono Q to yield apparently pure enzyme as judged by SDS-PAGE and gel filtration on Superose 12. Isoelectric focusing indicated microheterogeneity of the protein by the presence of at least five protein bands with pI 5.1-5.3. PD II had a pI of 5.75. Overall PD I purification was 60.7-fold with 50% yield. The enzyme acted on several osones (glycosuloses), with the preferred substrate being D-glucosone. D-Xylosone and 6-deoxy-D-glucosone were dehydrated at C-3-C-4 to give the corresponding 5-hydroxy-2,3-dioxoalcanals (4-deoxy-2,3-glycosdiuloses), new enzymatically produced sugar derivatives. The latter labile compounds were trapped as diphenylhydrazine or o-phenylenediamine derivatives and spectroscopically identified. The analogous D-glucosone dehydration product did not accumulate due to its further transformation. pH optimum of PD I activity was 6.0 and its pH stability was optimal at pH 7-11. The enzyme was sensitive to Me2+ chelating agents and some heavy metal ions (Hg2+, Cu2+).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anal Biochem. 1972 Aug;48(2):422-7 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1979 Mar 25;254(6):2132-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1966 Feb;55(2):388-93 - PubMed
    1. Carbohydr Res. 1992 Jul 20;232(1):59-75 - PubMed

Publication types

MeSH terms

LinkOut - more resources